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One-Sided Difference Approximations for Nonlinear 
Conservation Laws 

By Bjorn Engquist* and Stanley Osher** 

Abstract. We analyze one-sided or upwind finite difference approximations to hyperbolic 
partial differential equations and, in particular, nonlinear conservation laws. Second order 
schemes are designed for which we prove both nonlinear stability and that the entropy 
condition is satisfied for limit solutions. We show that no such stable approximation of order 
higher than two is possible. These one-sided schemes have desirable properties for shock 
calculations. We show that the proper switch used to change the direction in the upwind 
differencing across a shock is of great importance. New and simple schemes are developed 
for which we prove qualitative properties such as sharp monotone shock profiles, existence, 
uniqueness, and stability of discrete shocks. Numerical examples are given. 

I. Introduction. Consider a nonlinear hyperbolic conservation law in one space 
variable 

(1.1) u, + f(u)x = O. 

A typical solution of (1.1) has discontinuities across curves which separate 
regions in which the solution is smooth. These discontinuities develop in general 
even for smooth initial values. It is desirable to obtain a method for the numerical 
solution of (1.1) which gives a reasonably good approximation for the smooth parts 
but which also handles discontinuities such as shocks and contact discontinuities 
correctly. A computed shock should have the right speed, be fairly sharp, and be 
physically correct, i.e., the entropy condition should be satisfied across it. 

Various equivalent characterizations of the entropy condition have been given in 
the literature; see-e.g. [10]. Here we use the criterion that an admissible solution to 
(1.1) should satisfy the inequality 

(&) aau2 +ax(u4 -y+yF(u)< 

in the sense of distributions where 

F(u) = f sf'(s) ds. 

This inequality is, of course, an equality in regions where the solution u is smooth. 
For convex f and piecewise continuous u, it is well known that (& ) is equivalent to 
the geometric condition that all characteristics flow into a shock. 

One-sided or upwind differencing techniques have been used in computational 
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fluid dynamics for many years [19], [13], [17], [18]. Calculations have shown that 
they are particularly efficient when a shock occurs at a location where the flow 
changes direction or where supersonic flow becomes subsonic [7]. Errors in one- 
sided approximations at the shock will then not be propagated to the smooth parts 
of the solution and the computed shock profile stays sharp. The one-sided domain 
of dependence of upwind differencing which is useful in shock calculations also 
simplifies the numerical boundary conditions. 

For several space dimensions the ADI technique, or dimensional splitting, is 
generally used [19], [4]. Systems of hyperbolic conservation laws are traditionally 
approximated by centered difference methods. In recent years upwind differencing 
has been applied also to these problems [19], [14]. Different components of f are 
then differenced in opposite directions depending on the sign of the eigenvalues of 
the Jacobian matrix of f. 

Although one-sided methods have been extensively used, it was never obvious 
how to implement the switch in the differencing when the sign of f' changed. 
Nonlinear instabilities and convergence to nonphysical solutions (e.g. expansion 
shocks) are reported in the literature [7], [9]. It was previously not known how to 
design one-sided schemes which are guaranteed not to have these defects. 

It is the purpose of this paper to present such a method which is of second order 
away from stagnation points and discontinuities and first order at isolated stagna- 
tion points. We will also show that there are no stable one-sided schemes with 
higher order than two and prove qualitative shock resolution properties for the first 
order method introduced in [4]. 

We designed this first order method for a scalar conservation law as a step in 
approximating the time-dependent small disturbance equation of transonic flow. 

(1.2) 20= (K4(D - (y + i)'I2) + 

where 1' is the velocity potential, K and y are positive constants. The scheme 
approximating (1.1) is 

(1.3) 
n+ =Un- 

At 
(1.3) j.n+ U = x _ (A+ f(ujn) + A+(ujn)). 

For convexf, we define 

f+ (u) = f(max(u, u-)), f(u) = f(min(u, iu)), 
where u- is the unique stagnation point, i.e., f'(u) = 0. For generalf, we first let 

x(u) 1 iff'(u) > 0, x(u) 0 iff'(u) < 0, 
and then define 

u u 

f+(u) = f x(s)f'(s) ds, f(u) = f - x(s))f'(s) ds. 

The mesh function ujn approximates u(x, t) at the mesh points (xj, t0), xj = jAx, 
tn = nAt. The operators A+ and A_ are respectively forward and backward 
differences in space (A, uj = + (uj?1 -uj)). 

In [4] we proved that this scheme is nonlinearly stable (L2 norm nonincreasing) 
for a class of functions containing f(u) = Ku - }(y + 1)U2 which is the ap- 
propriate f for our splitting approximation to (1.2). In fact, the scheme (1.3) is 
monotone and hence, by the results of [1], [6], the solution uf" must converge in L1 
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and the limit solution has no nonphysical shocks. Both signs of f' are permitted 
and, in domains where this sign is constant, (1.3) is the standard first order upwind 
difference scheme. If, for example, uj' < u- (for convex f) for all mesh points 
involved, we have A+ f(uj) =0 and the scheme is 

n+I n -At n) 
(1.4) u =n A f(u) 

The difference equation (1.3) is written in conservation form. Lax and Wendroff 
[11] showed that to satisfy the integral form of the conservation laws it suffices to 
approximate them by difference equations in conservation form. For example, the 
well-known one-sided difference approximation to (1.2) of Cole and Murman [12] 
sometimes gave incorrect shock speeds for limit solutions, until it was put in 
conservation form [7]. All methods considered in this paper are in conservation 
form and will thus produce approximations with the right shock speed. 

We proved, in [4], existence and uniqueness of the solution approximating a 
shock for the steady-state difference approximation (1.3). In the present paper we 
continue this qualitative analysis and prove existence, stability, and monotonicity 
of sharp discrete shock solutions of (1.3) for the time-dependent approximation. 

It is simple to extend the first order one-sided approximation A+f and A-f to 
second order ones (A+ - IA52)f and (A + I A)f. If we let uj(t) approximate 

U(xj, t), the first attempt for a second order time-continuous analogue of (1.3) is 

(1.5) -auj -((A _ IA2 )f(uj) + (A + I 
2)f+(U at Ax2- 

It is possible to design a linearly stable scheme based on (1.5) via a Lax- 
Wendroff type time-discretization. However, the resulting scheme has severe de- 
fects. It produces nonmonotone discrete shock profiles with overshoot in numerical 
tests. We shall also prove that steady monotone shock solutions do not exist for this 
scheme. 

We propose instead the following scheme for the time-continuous method of 
lines approximation to (1.1) 

(1.6) at = -x((A+ f_(Uj) - 2A+(f'(Z1)A+U0)) 

+ (A\f+ (U) + IA(+(w,)Au1))), 

where 

f max(uj, uz+ 1) if uz-I < u, 
Z 

t if uj_ u, 

|min(uj, uj-l if uj+ I > u-, 
u tU if u1 Lui, 

forj = 2, ..., N-2withu0, u1, uN-I and uN given. 
This scheme is fully one-sided and uses the minimum number of mesh points 

(three) away from the stagnation point u-. It is of second order accuracy away from 
u- and at least of first order near u-. 
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We use the energy method for proving the stability of the scheme (1.6). For a 
class of functionsf, includingf(u) = Ku -(Y + 1)u2, we have the strong estimate 

11 u( T) 112 < II u(0)112. 

Here 11 11 denotes the usual discrete L2 norm either for periodic functions or for the 
whole real line. An analogous result for more general boundary conditions can be 
obtained. 

For this class of functions f, we can also show that any limit solution of (1.6) 
must satisfy the entropy condition. 

Time differencing of Crank-Nicholson type preserves both the unconditional 
stability and entropy properties and there is strong numerical evidence that a 
second order explicit Lax-Wendroff time differencing also is stable for CFL 
number close to the linear stability bound which equals 2. This time-discretization 
is given in Section 5. 

We shall also show the somewhat surprising result that the only steady solutions 
to this second order scheme which agree with a shock as x -+ oo exactly equal the 
shock except for at most two points. Moreover, each such profile is monotone with 
no overshoot. These steady shocks are hence resolved exactly, using our second 
order scheme (1.6) just as they are for our first order scheme (1.3). 

The order of accuracy of the scheme (1.6) is optimal. A one-sided method of 
lines approximation to the simple equation 

(1.7) ut= aux 

for a > 0 must have the form 

(1.8) - L- - k-OjX aku1+k. (1.8) ~~~at Avx + A E k= >+ 

It is of order of accuracy q if, for smooth functions Ai(x), 

(1.9) 
I 

L+%{(x) = 4x(x) + O((Ax)q). Ax 

We will show that an approximation (1.9) cannot be of more than second order of 
accuracy if it is stable, i.e., if 

11 u( T) 112 < C( T)1 llu(O)112. 

The most compact stable second order approximation is given by L+ = A, 
-2 2+ 

. 

The analysis proving this saturation result is given in Section 2. The analogous 
result for explicit time differencing was proved earlier by Gilbert Strang [15]. The 
two proofs are based on different principles. 

In Section 3 we analyze the second order scheme (1.6). We prove the sharp shock 
profile, nonlinear stability, and entropy results. A somewhat simpler upwind 
centered, but not strictly one-sided, scheme is also studied and shown to have all 
the above mentioned desirable properties for arbitrary convexf. 

Discrete shocks to the first order accurate approximation (1.3) and to more 
general monotone schemes are analyzed in Section 4. We also discuss the modified 
parabolic equation mentioned in [5] and show that discrete shocks for our scheme 
are generally "closer" to solutions of the hyperbolic equation (1.2) than to solutions 
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of this parabolic equation, which contradicts a frequently made conjecture. Our 
scheme is also shown to contradict estimates on width of transition of discrete 
shocks in [5]. However, our truncation error leads to a parabolic equation whose 
viscosity vanishes at sonic points of f(u). The conjectures may be valid for strictly 
parabolic approximate equations. We also explore briefly the numerical resolution 
of linear and contact discontinuities. 

Finally Section 5 contains results and comments upon some numerical computa- 
tions. 

II. Accuracy in the Smooth Parts of the Solution. When the solution of a 
nonlinear differential equation is smooth, the convergence of the corresponding 
difference approximation is, in general, guaranteed by consistency and linear 
stability [15]. Good stability properties for the linearized equations are necessary 
but not sufficient for a successful nonlinear method. 

We shall analyze the relation between stability and order of accuracy for 
one-sided approximations to the model problem 

u, = aux, -oo< x <oo, t>O, 

(2.1) u(x, 0) = qp(x), 

with a > 0. 
We first consider a time-continuous method of lines approximation to (2.1). The 

solution of (2.1) is approximated by uj(t), (uj(t)- u(xj, t)). The general form of a 
one-sided approximation of (2.1) is given by the system of ordinary differential 
equations 

(2.2) at Ax A=x kt 

u1(O) = qp(x1), j = 0, ? 1, ?2,. 

The CFL-condition implies that (2.2) can be stable only if a > 0. Analogously, 
the one-sided approximation 

p 

Luj = akUjk 
k=O 

corresponds to negative a. 
We will assume the method to be consistent with (2.1) which implies 

P P 

(2.3) ak =0, E kak = 1. 
k=0 k=O 

The difference operator L+ can then be written 
p 

(2.4) L+= + 
k= 1 

with fh = 1. The relation between { ak} and { f8k} is given by 

a = /P, 

a,- = 8P - I1- pfp, 
(2.5) . . 

a1 = 1 - 2f2 +* - (-1)/p,,p 

a0 =-f3 + 82 -. + (-1)I3p. 
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As in the introduction, we call the approximation (2.2) stable if there exists an 
estimate 

(2.6) jIu(t)112 - Ax2 Iu.(t)12 < C(t)IIu(0)112, 
j 

where C(t) is a function which is bounded independently of Ax and u. It has the 
order of accuracy q if, for smooth functions Ai(x), 

L ++(x) 4A(x) + O(Axq). 
AEx 

We now present a saturation result which states that there are no stable 
one-sided methods of arbitrary order of accuracy. 

THEOREM 2.1. Stable approximations of type (2.2) can be of at most second order. 
Moreover, there do exist stable second order approximations and the most compact 
(smallest p) is given by f31 = 1, 82 = -2 for p = 2 in (2.4). 

Proof. We Fourier transform the differential difference equation (2.2) (2.4) in 
space. From Parseval's relation, the stability condition (2.6) is equivalent to the 
inequality 

(2.8) Re[ 
a 

l Pk(e )I - '] < C, -7T < H <IT, 

for some constant C. Since C is independent of Ax, the stability condition (2.8) can 
be written 

p 

(2.9) Re 2 ftk(K - 1)k < 0 for |K| = 1. 

Following Dahlquist [3], the unit circle IKI = 1 is mapped onto the imaginary 
axis, Re z = 0. 

K i z+l ___ 

(2.10) Z(K) = K(Z)=- , K-l=- 2z 
K + ~z - z-l 

From (2.9) and (2.10) we get the stability condition 

(2.11) Re[Bp(z)] <0 forRez=0, Bp(z)= E 1k(l Z) z 

The function Bp(z) is analytic for Re z < 0, and for large IzI it is of the form 
p 

(2.12) Bp(z) = /3 + ?(jzjI'), / = 2 (-2)k,Bk. 
k=1 

When (2.1 1) is valid, the constant /3 cannot have a positive real part. The maximum 
principle for the harmonic function Re[Bp(z)] implies the equivalent stability 
condition 

(2.13) Re[Bp(z)] <0 forRez <0, 

since Bp(z) m constant. 
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Assume now that the order of accuracy is higher than two. We have 

1I Ax Ax2 
AXL+%P(x) = Ihyix 

+ 2 y XX + 6 {xxx 

+ #2(AXPxx + AX24Pxxx) + 83AX2xxx + O(Ax4) 

and hence 

#I = 11 2 = 2 18 3= ' 
2z I 2z 21 1z 

(2.14) BP (z) 1= z 2( 1-z)2 +3( 1z)+ O(z) 

= 2z + - z3 + O(z4). 
3 

Define = z-1 and Gp = Bp(z)-l. The rational function Gp then has the analogous 
properties of (2.13) 

(2.15) Re[ Gp(D)] < 0 for Re < 0, 

Gp() B= -p(D-)- = (2k-' + 2 -3 + o( 4))-' 

(2.16) = I - _- + (t_2) = + 

The function gp is analytic for Re D < 0 and 

Re[ gp(t)] -*Re[ Gp()] for Re D 0, 

gp(t) 
O- for I -- + mo. 

Hence we can use (2.15) and the maximum principle for the harmonic function 
Re[ gp(')] to show 

(2.17) Re[ gp(?)] < 0 for Re < 0. 

From (2.16), we have gp(') = - + 0( -2) which contradicts (2.17), and the 
first part of the theorem is proved. 

For the second part, we need to show that (2.11) is valid for 81 = 1, /2 - -2 

18k = ?, k > 3. 

R[2z _I (2z )2] 2ia(1- 2ia) (f i 1 Re 1 Re[ 2 (forz = ia, real) 

4a4 
-- ~~~~~0. 

(1 + a2)2 

Hence, the scheme is stable and it is easy to see that it is of second order accuracy. 
There is no second order method with p = 1 and the second order p = 2 scheme is 
unique. 

There are several analogies between this theorem and Dahlquist's saturation 
result for A-stable linear multistep approximations to ordinary differential equa- 
tions [2], [3]. 
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Remark. It is easy to construct one-sided difference formulas of any order of 
accuracy if the constraint of stability is neglected. The difference approximation 

(2.18) AL+ = 
!(x ! 2 k ( ) 

is of pth order, but, as we have seen, it is only useful forp = 1 andp = 2. 
The accuracy of a time-discretization of (2.2) cannot be more than of second 

order in Ax if the scheme is consistent and uniformly stable in At as At --0. Any 
solution of (2.2) for fixed Ax can be approximated arbitrarily well by the difference 
scheme, and hence there can be no stability estimate if there is no bound on the 
solution of (2.2). Compare also the saturation result for explicit methods by Gilbert 
Strang [15]. 

For the special and purely theoretical case of a fixed ratio aX = aAt/Ax = 1, the 
Euler time-discretization with L+ = Al+ gives the infinitely accurate method 

Uj(tn ) = Uj+ l(tn). 
The stability analysis for difference approximations of the simple equation (2.1) 

is far less complex than the corresponding analysis for the approximations of the 
nonlinear problem (1.1) which we perform in the next section. Since the linear 
analysis is useful as a necessary condition for more general problems, we will 
briefly consider some standard time-discretizations of (2.2). 

Un+1 (2.19) = (1 + aXL+)ujn (Euler), 

(2.20) Un+= I + 
2aXL+ujn 

(leap-frog), 

(2.21) 1 =(1 + aAL+ (a2 )2)ufl (Lax-Wendroff), 

(2.22) (I - a9L+)Un+1 = (I + 
ax 

L+)ujn (Crank-Nicholson). 

We will call the schemes stable if there exist an estimate 

jjunj l C(nAt)jju0jj 

for the one-step schemes and an estimate 

jjunjl < C(nAt)(jluoll + ljull) 

for (2.20). 

THEOREM 2.2. For L+ = A + - A2 the schemes (2.19) and (2.20) are uncondi- 
tionally unstable, (2.21) is conditionally stable for 0 < aX < 2, and (2.22) is uncondi- 
tionally stable. 

Proof. The von Neumann stability condition is necessary and sufficient for the 
scalar one-step methods. It is necessary for the stability of the two-step scheme 
(2.20). Thus, in order to prove the theorem, we need only to determine the 
amplification factors c(#). 

For the scheme (2.19), the amplification factor, i.e.,the Fourier transform of the 
difference operator (1 + aX(A+ 2 2M+)), is 

(2.23) c(#) = 1 + aX(is(l + 2r) - 4r2), Ic(O)j2 = 1 + (aXO)2 + 0(04), 

where s = sin 0 and r = (sin 0/2)2. 
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For (2.20), c is given by 

C1,2() = a l+ , a = aX(is(l + 2r)-4r2), 

(2.24) 1c2(O)12 = 1 + _A + o(05). 

For (2.21), c is given by 

c(O) = 1 + aX(is(l + 2r) - 4r2) + (aX)2(4r2 - 2irs - 2r), 
(2.25) 

Ic(0)12 = I - 4aX(l - aX)2(2 - aX) r2, Ic(O)12 < 1 for 0 < aX < 2. 

For (2.22), c is given by 

1 + 
ax 

(is(I + 2r) - 4r2) 
(2.26) c(O) 

2 
a, Ic()l < 1. 

1- - (is(I + 2r) - 4r2) 
2 

III. Entropy Production, L2 Bound, and Sharp Shock Profiles for the Second 
Order Scheme. In this section we shall consider the initial value problem for the 
conservation law 

(3.1) ut + (f(u))% = 0, u(x, 0) = u0(x). 

Our numerical results will mainly concern f in the class C = {f E C3 I f"(u) > 
0 with a unique u- such thatf'(u-) = 0). 

We seek to construct differential-difference approximations to (3.1) having the 
following properties: 

(a) Second order accuracy away from the sonic point u-, at least first order 
accuracy at u-. 

(b) Fully one-sided and using the minimum number of mesh points (three) away 
from the sonic point. 

(c) Nonincreasing L2 norm for all solutions. 
(d) Limit solutions which must satisfy the entropy condition. 
(e) Sharp monotone profiles for zero speed shocks. 
As in the introduction, we let uj(t) approximate u(xj, t). 
In order to construct a one-sided scheme, we follow [4] and define 

{ f(u) = f(u) if u < u, 

(3.2) f (u) =f(ii) if u >iu, 

Jf+ (u) = f(u-) if u < u-, 
f+ (u) = f(u) if u > u-. 

In [3] we constructed a first order accurate scheme having the properties (b)-(e) 
as follows: 

(3.3) a- j = (Af(u) + A+f_(Uj)). 

A natural second order one-sided generalization, in view of the linear stability 
results of the last section, is 

A( A 
uj (A + -_A2 )f(Uj) + (A + I 

A2)f+ (u )] 
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We have been unable to prove nonlinear stability (or instability) for this scheme. 
However, in Remark (3.1) below, we shall prove that steady monotone shock 
solutions of (3.4) do not exist, there must be overshoot. (We also construct all 
steady solutions to (3.4).) 

We propose instead the following scheme: 

au- [(I ( -,)) -+(f'(zj)A+uj) 
(3.5) at (Ax u) 

+ (A f+(uj) + I A_(f'+(wj)A u))], 

where 

max(uj, uj + ) if uj_ < ii 

' ta if uj I> , 

w=|min(uj, uj-l if uj+1 > iu, 
Wi 

ii if uj+I<u. 

We expand upon the properties (a)-(e) which (3.5) will be shown to have 
(a) Smooth solutions to (3.1) satisfy (3.5) with error O((Ax)2) as Ax -O0 at any 

point (x, t) for which u(x, t) a iu. The error is at most O(Ax) if u(x, t) = - and 
improves to O((Ax)2) if f"(u) = 0. 

(b) If uj, uj_1 < u-, then the right side of (3.5) involves only uj, uj+ , andUj+2. 
Similarly if Uj, uj+I > a, then only uj, uj-1, and u-r2 are involved. 

(c) Solutions to (3.5) satisfy the a priori estimate for any t > 0: 

E u2(t)Ax = IIu(t)112 < IIu(0)II1. 

(d) If uj(t) converges boundedly a.e. to u(x, t) as Ax 0, then u is a weak 
solution of (3.1) satisfying the entropy inequality 

(3.6) a- -2 + a F(u) < 0, at 2 aX 
where 

F(u) = J sf'(s) d-. 
u 

(e) The only steady solutions of (3.5), satisfying 

lim uj = u, limuj= uL, 
j-o00J j-oo 

withf(uR) = f(uL) andf'(uL) > 0 >fp(uR), are of the form: For some]0 

Ua -Ii , j h j 

uj _=uR, >Jo + 1 

antd u.o E- (iu, U LI, uojo+ E- (U R, iu ], with 
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The profile thus looks like 

u 

__x 

We have 

THEOREM 3.1. Properties (a), (b), and (e) above are valid for any f E C while 
properties (c) and (d) are valid for f E C, having the additional property 

(3 7) ( (uv)2)f (s) f 0 y <iu, 

(ii) fv(-1 +2(_u)2)f"(s)ds O if u <u <v. 

We note that if f"(u) is piecewise constant, having a jump only at u = iu, it 
satisfies (3.7). 

We can construct a scheme having properties (a), (c), (d), (e) for arbitraryf E e, 
but which is not fully one-sided. However, it is upstream centered (see, e.g., [16], 
[17]) which helps explain why it also has the steady sharp shock profiles of property 
(e). 

The scheme is 

a uj 
(3.8 aT = -/\X[(A+ m_uo) - 1A+(f_'(0jA+u0)) 

+ (Af+ (uj) +2A (f()Au1)) ], 

where this time 

j= max(uj_1, Uj, uj+1), oj = 
min(uj+1, uj, uj-,). 

We now have 

THEOREM 3.2. Solutions of (3.8) satisfy properties (a), (c), (d), (e) above for 
arbitrary f E C. However, property (b) becomes: if uj, uj1 -I , then the right side of 
(3.8) involves only uj-1, Uj, uj+ , and Uj+2. Similarly, if ujuj+I > u, then only 

j+19 Uj, u I , and Uj-2 are involved. 

Finally we have 
Remark (3.1). There exist no monotone steady solutions to (3.4) satisfying 

limO U1 = uR, limj_OO uj = u , with f(u L) = f(uR ) and f(u L) > 0 > f(u R). 

Any steady solution must have overshoot. 
Proof (Theorems (3.1), (3.2) and Remark (3.1)). We begin with the accuracy 

result, part (a) of both theorems, which is surprisingly complicated to prove. 



332 BJORN ENGQUIST AND STANLEY OSHER 

Taylor's theorem gives us, for smooth functions uj(t) = u(xj, t), 

(a) A+ f_(uj) = Axf'(uj)u (xj) 

- + 1) [ f"(u(s))(u.(s))+ + f' (u(s))ux(s) ] ds 

(3.9) and 

(b) A-f+(uj) = Axf+(uj)ux(xj) 

- ft (S -Xj>)[ f (u(s))(u"(s))2 + f'+(u(s))uXx(s)] ds. 

Add and we obtain, for smooth solutions of (3.5) 

auj + f'(u(xj))u.(x1) at 
= I [f+ (- x "+)(f"(u(s))(ux(s)) + f'(u(s))uxx(s)) ds] 

(3. 10) + 1^ f z)+> 

+ 
I 

[ (S - x 1)(f$(U(s))uX2(s) + f'+(u(s))uxx(s)) ds 

-2 Vf' (Wi)A 0v) 

We wish to show that the right side of (3.10) is O((Ax)2) as Ax -O 0 if u(xj) # i or 
if u(xj) = iU and f"(uD = 0, and that it is O(Ax) if u(xj) = ii andf"(u =# 0. 

If either the first or second case is valid, then f_, f+ are both C2 and piecewise 
C3, so we may integrate by parts once more obtaining 

atj + f'(u(xj))ux(xi) 

= - AX[ At (" (j))U "x(j) + f ( (j)) Uxx (Xj- 2 +(_z)+u)] 13y 1 1) 2 / [ \ ("(y))u2( + +j)- 2 1 (f+ O\ ] 
I -A f",,(U(Xj))u2,(Xj) + - U+(f'(z.Uxxu(X 

(3.11) + ! Ax[f( ) + jf"(u(x))ux2(x) - 1 A(f'w ds 

LfX (sAx)2 

A J ( -x - a[f4,(u(s))u.(s) + f(u(s))uxx(s)J] ds 

The contribution from the two integrals is easily shown to be O((Ax)2). We thus 
need only show that 

(3. 12) f"((x)) ux2(xj) + f'(u(xj)) uxx(xj)- + (f'(z)A + u) = O(Ax) 
(AX)2 

and analogzously forfL. 
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We shall show 

(a) f"(u(xj))ux2(xj) 
x2(A+ fQ(z))A+uy = O(Ax) 

(3.13) and 

(b) f'(u 
(xj))u.(xj)- 

2f'(z1+1)A2u1 = O(A2x). 
(AX) 

Adding these will give us (3.12). 
Part (3.13)(b) follows because Aj u1/(Ax)2 = uxX(x1) + O(Ax) and f'(z1+ ) = 

f'(u(xj)) + O(Ax). For part (a), we need 

(3.14) U,(xi)[f"(u(xi))ux(x.) - (f-(Z,+1) -fJZ)) = O(x). 

Now if u is monotone on (xi, xi+2) and u(xj) # U-, then either zj = u(xj) and 

zj+ = u(xj+1) or z= u(xj+ ) and zj+ = u(xj+2). In either case, (3.14) is obviously 
valid. If u is not monotone, then ux vanishes somewhere in this interval and (3.14) 
is valid with O((Ax)2) as right-hand side. If u(xj) = u-, then f"(i) = 0 and the result 
follows simply. 

It remains to show that the scheme is first order accurate at sonic points when 
f"(u-) # 0. Then f and f+ are C' and piecewise C3 with a jump in f" at u = u-. 
Equation (3.10) is still valid, and f(zj) = f'(zj+,) = f+(wj) = f;(w_ 1) = 0 and the 
integrands are each easily seen to be O((Ax)2), so the result follows. 

For the scheme (3.8), we merely replace zj by Dj in (3.10), (3.13), and (3.14), and 
the result follows with no difficulty. 

Next, we obtain the L2 estimate, part (c), for both schemes. Multiply both sides 
of (3.5) by ujAx and sum, arriving at 

at 
(3.15) lIII2 = [u1A+ _ - u1A+(f(z1)A+u)3 

-X [~uAif+(u,) + I (Ujf_(+Wj)AUw)] =[ I] +[II] 

Now, 

[ ] = E (f X (s - u)f'(s) ds + 2ujA+(fZ(z1)A+ u7)) 

(3.16) = 1 > ((/A+ u1)2f'(U+u)j- (s-u1)2f "(s) ds 

+ (A u>)(A+u0)(-f_(z1))), 

where we added E2f'+1 sf(s) ds = 0, integrated by parts on the first term, and 
summed by parts on the second. 

Next, we apply Schwarz' inequality to the last term, switch orders of summation, 
and use the fact that f(zj) < 0 to arrive at 

(3. 17) 2 (lA_u0)(A+U0y)(A-fu'(Z))) 

< 21 2 (A+ Uj) 2( -f' (Zj+ )) + 21 2 (A+j U - ) ( _A ) 



334 BJORN ENGQUIST AND STANLEY OSHER 

This tells us 

['1] < (A+ uj)2 2f(uj+ l)- (z+ - f(z) 

(3.18) 

- 

or 

2 f(s) 

dsf If either uj+I > Uj, or 

K u 
uj+I < Uj, the integral appearing above is nonpositive 

because of convexity, so we need only show the inequality 
(3.19) 2f'(uj+1) -f(z+1) - f(zj) < 0. 

Since zj, zj+I > uj+ , (3.19) follows from convexity. Next, we consider the case 

uj+ I < u- < Uj. We then must verify 

(3.20) ,+ (s - u<)2 

or 

(3.21) ( U:(u,+ X-f_(u)) + 
j2 

( i) f2(s) ds < 0, 

or, finally, 

(3.22) . [;( )2 I]fu (s) ds < 0, 

which is true by convexity. 
The last remaining case is uj 6 uj < u-. Then, if zj+l > uj (which means 

uj+ I > uj), we have the estimate 

2U, (( j)2 ) 

f (ui + 1)f' (U0 + (s - f''"(s) ds 

(3.23) ( 

=2f. ((A ) u 
- 1)f(s) ds < 0, 

by our special hypothesis. 
The proof that [II] S 0 follows analogously. 
To prove stability for (3.9), we proceed in the same way with Zj replaced by Dj in 

(3.18). Since O Z and w+ 1 h Uj convexity gives us the desired estimate. 
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In order to prove (d), the entropy inequality for limit solutions, we let p(x, t) E 
Co(R x R+) be an arbitrary nonnegative test function. We shall show that 
solutions to (3.5) satisfy the inequality 

-fi Axf dt[p,(xj, t).ji( + ( A 0) F(uj(t))] 
1 o [-' ~~~2 Ax -' 

< AX" 0dt (A+ p(x1, t)) r ______ 
1 

(3.25) Jo fi X1? dt Ax [1j+1A+ f+(U0) + u- 2 A+i)1j+1 

+Uj+1f+(Wj)A_,j 1 U)2f, (W 

U(A)2f ()] 

-4 (A+ j)f'(j+ 1)] 

Then, as Ax 0 if u(xj, t) u(x, t) boundedly a.e., the above right side 0 and 
the left side - - ff(p,(u2/2) + pjF(u)) dx dt by the Lebesgue dominated conver- 
gence theorem. Since p > 0 is arbitrary, inequality (3.6) is immediate. 

To obtain (3.25) we multiply (3.5) by p(xj, t)ujAx, sum and integrate, then add 

-X Axf dt (Ax- ) F(uj(t)) 
(3.26) =X x t) 

xo dt fX s(s) d 

to both sides, arriving at (suppressing the t dependence) 

Left side of (3.25) 

= p(xj)[f (s - uj)f'(s) ds + 2ujA+(f'(z)+U)] 

(3.27) + P(X[) [f ( - uj+ 1)f'+(s)ds - + 
Uj~ ~~ jA('(jAU 

+ X(A+p(x1))u1+ A+ f+(u1) 

= [I]p + [II]p + [III]' 

We shall call all o(l) terms [III]', numbering them as they arise. Integrate and 
sum by parts in [I]p arriving at 

[I]p= 2J [(+)fz(uj+1) -L_(s-Uj)f_(s) d 

(3.28) + (A_u0)(A +U)( -fr'(z))] 

+2 (A(x )) u_'(zj)A+uj. 2 
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Call the last term above LIIIJ2. Schwarz' inequality gives us 

z 2, ( u0)(A+U0(-f-(Zj)) 

< + ( +2 [P(xj)( -f'I(zi) - f'I(Zi + ))] 4 

(A U)2 
- + ( 

f-'(zi+,)A+P(xj) 

4 
P 4 (xj) f_z)- z+1)) +[111]p. .~~~~~~~ 

Thus we have 

____ (X Uj)2 12f.(U f,(Z f (Z 

(3.29) 

-2t u( 
s 

u ) f,,(S) dWS + [III]2 + [III]3. 

It is also easy to show 

[II]p < 2 4 [ -2f+ (uj) + f+(wj) + f+ (wj+ 1) 

(3.30)A 'fi()]+[Iy 

Uy+, j+u/ f+S2 s] + [III]4 +[II, 

where 

(3.31) [Ip= z A+2(x) > U14f (w)Auj, 
[I5 = 2 +p(x) 

4 

The first term in brackets in both (3.29) and (3.30) has already been shown to be 
nonpositive. Thus, (3.25) follows from (3.27), (3.29), (3.30), and (3.31). 

The proof of part (d) for solutions of (3.8) follows in the same fashion. 
Next, we prove part (e) of both theorems and the related Remark (3.1). 
Summing (3.5) from -oo toj shows us that steady solutions satisfy 

(3.32) f (Uj+l) - 2f'(z1+1)A++f + f+((u;) + If+(wj)A&uj = f(iu) + f(uL). 

Let jo be such that uj > u for j < jo, ujo+I < i. Then, for j < jo- 1, (3.32) 
becomes 

(3.33) f(u1) + 2f'(w1)A (uj) = f(UL) 

or 

2(f(uL) f(U)) 

_ j PO 
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Thus, if for some j] < jo-1 we have 
uj, 

> uL, thenAu < or uL <Uj <ifj1. 
Repeating this gives us u jL < u , if v < j], which is impossible. Similarly, 

uj < u Lis also impossible; thus uj uL forj < jo - 1. 
Next, we claim uj 12 < u, for suppose this is false. Then (3.32), for j = jo + 1, 

gives us 

(3.34) MO(" + f + (0 = L00" + f(U L) 

or 

f+(0) = f+(u L), 

which is a contradiction. 
We also claim uj < iu if j > jo + 2. Suppose there is j] > jo + 2 for which uj, > u 

while uj < iu for jo + 2 < j < j,. Let j = j -1 in (3.32). Then we have (3.34) 
which is a contradiction. It now follows that uj- u R forj > jo + 2 in the same way 
that it was shown that uj _ uL for j < jo-1, and (3.32) is valid for all j except 

j = jo. For this value we have 

(3 35) L_(uj+ +1) +f j) = f(iu) + f(U L), 

and for each ujo E (ii, u L], there exists one uj0+1 E (uR, u] solving this. Thus part 
(e) of Theorem (3.1) is proven. The same proof works for Theorem (3.2). 

To prove Remark (3.1), we examine steady solutions of (3.4) which must satisfy 

(3.36) fL(uz+1) - I f(+Luj+) + f+(uj) + I&f+(zuj) = f(ii) + f(uL). 

Definejo as above. Then, forj < jo - 2 (notice, notjo - 1), we have 

(3.37) f j(zj) + I 
f+(Aj) = f(UL) 

or 

2(f(uL) jf()) 

(AJf(Uj))/A_u. 

So, as above, uj uL forj < jo - 2. We again claim ujo+2 < u, because if not, we 
may takej = jo + 1 in (3.36) giving us 

(3.38) 4(fl(j0+3) jf()) 2(f+(zf,) - f(ii)) = f(UL) - f(iu) 

but the left side is nonpositive and the right side is positive, another contradiction. 
We suppose there existsjl >jo + 1 for which uj, > iu, while uj < u forj + 2 < j < 
] . Letting j = jI - 1 in (3.36) gives us (3.38) with jo replaced by j -2, giving us 
the same contradiction. Thus, we have 

Uj _UL, j O - 29 

(3.39) u , 
u-UR, j >jo + 3, 

and it remains to solve (3.36) forj = jo - 1, jo, andjo + 1. 
We may normalize so that iu = 0 = f(ui). These equations become 

(a) Vf+(ujo -) -1fL(ujo0+ ) = 3f(uL), 

(3.40) (b) - f+ (Ujo-l) + fa+ (Ujo) + 3f(Ujo + 1)- j o (zj+2) = f(U L), 
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In order that a discrete shock exist, we need a solution to this with ujo- 1, uj, > u; 

ufo + 1 fUo +2 < ii. Solving this system of equations in terms of f+(ujz,.) and f(uL) 
gives us 

f+(ujf1) = 2f(uU) - 3f+(ujo-1) 

(3.41) (L(uzo+ ) = -3f(u ) + 1) 

=If(UL) - +( L (Uj,,+2) =2f( )f(jo _ ). 

The following inequalities are easily shown to be necessary and sufficient for 
existence of a solution: 

3u L) > f+ (Uj )f" ), 
-2f(U L) > f+ (U.>O 

2f(U >f(jo +,) > O, 
3 UL ) >L_(Uj ,+2) >f(UL). 

Thus there must be overshoot. Prescribing uj,- Iin the interval (uL,fi'(3f(u L))] 

gives us a unique solution. 

IV. Discrete Shocks for the First Order Scheme. In this section we shall analyze 
discrete shocks and contact discontinuities for the first order accurate monotone 
difference approximation to (3.1) of the form 

(4.1) ~u"+1 = u,f - X[A+f (u<) + A-f+(u,n)] = G(uji+,, ujn, ujL,) 

= j - x(h(uj(1,, ujn,) 
- 

h(ujn, ujn %)), 

where 
u u 

f+(u) = f x(s)f'(s) ds, f(u) = J( - X(s))f'(s) ds, 

for 

X(u) = I if f'(u) > 0, 

x(u) = 0 if f(u) <0, 
with the CFL condition Xlf'(u)l < 1. 

We shall prove existence, stability, monotonicity, and an ordering principle for 
discrete shock solutions of (4.1) following [8]. Jennings' results in (8] apply only to 
strictly monotone schemes, i.e., if 

(4.2) U' = G(u k, ... * * _, ) 

then G,, > 0 for it = -1, . . ., k. Our scheme is only weakly monotone, i.e., G. > 0; 
thus we need to use some of its special properties in order to prove these results. 

Another difficulty is the existence of numerous errors in Jennings' work. In 
particular, his stability proof has to be completely redone. A new proof was 
recently obtained by James Ralston; we shall give it below (Jennings' existence 
proof was also cleaned up by Ralston with some minor modifications; we omit the 
details). 

Our difference scheme will be shown to approximate steady shocks with infinite 
resolution and also to approximate a wide class of moving shocks with infinite 
resolution in front of the shock. What is perhaps more surprising is that contact 
and linear discontinuities can also, in some cases, be resolved exactly, thus 
contradicting much numerical evidence, e.g. (5]. 
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Finally, we analyze the truncation error equation for (4.1). It has been conjec- 
tured in several places, e.g. [5], that solutions to difference schemes are closer to 
solutions of the truncation error equation than to solutions of the hyperbolic 
conservation law (3.1). We shall show that this is sometimes false for (4.1) using the 
discrete shocks discussed above. We also show that previously conjectured esti- 
mates [5] for the spreading of discrete shocks are not valid in this case. 

A discrete shock solution of (4.1) moving with speed s satisfies the difference 
approximation 

(4.3) uj = G(uj+ 1, uj, uj 

The minimal domain on which (4.3) makes sense consists of functions defined on 
the linear span over the integers of q = sX and 1. Call the closure of this set C.,. If 1 
is rational, E, is discrete, if q is irrational, then e,, is the entire real line. L1(E,) is 
the space of absolutely integrable functions on e' with the usual measure. Let the 
solution of (4.3) satisfy 

(4.4) (a) lim U.= UL lim Uj= U>R 

the Rankine-Hugoniot relation 

(b) S(UR - UL) = f(UR) -f(UL), 

and Oleinik's condition E 

f(u) -f(UR) f(UL) -f(uR) 
(C) U UR U L _UR 

for u strictly between uR and uL. 
Our first result concerns existence and ordering of discrete shocks. For conveni- 

ence only, we shall take uR < UL in what follows. 

THEOREM 4.1. If jq I < 1, then for each uo E (U R, UL) there is a function continuous 
on C. taking on the value uo at j = 0 which satisfies (4.3), (4.4) and which is a 
monotone nonincreasing function of j. These shocks obey the following ordering 
principle: if s #= 0, or if s = 0 for convex f E (C, then, if uo > vo for two such discrete 
shocks, it follows that uj > vj for all j. 

We next have a stability result for discrete shocks. 

THEOREM 4.2. Suppose q #= 0 is rational, or q = 0 and f E C, and the initial 
function { u9} has the properties 

(a) XjuO9uj - uRI < , 

(b) 2 < 
- u LI < x, 

(c) Uj E [uL, uR] for all j. 
Then the sequence 

uj = G(UJ1 jy UJ_1) 0) = , , 

converges as n - oo to the discrete shock vj satisfying , (vj - u) = O. 

We also have sharp shock profiles without overshoot as follows. 
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THEOREM 4.3. (a) Suppose the shock speed s > 0 and f'(uR) < 0. Then the 
monotone discrete shock solution to (4.3), (4.4) has the property that there exists jo 
with Uj-uRfor j > jo. In fact, if uo is such that f'(u) < O for all u E [uR, uO], then 

j 1 - sX. 
(b) If s < 0 and f'(u L), then there exists jo with Uj-u L for j < jo, and if f'(u) > 0 

for all u E [uR , ULI then jo > -1 + sA. 
(c) If s = O for convex f E C, then there exists jo with uj uL for j < j R 

forj >jO + 1, and uo, ujo + solve f (ujo +) + f+(uj) = f (uL) + f+(UL) with f(uj) 
= 0 = f'+(Uy + l) 

In order to prove the stability result, we shall need the following result of 
Ralston. 

THEOREM 4.4 (RALSTON). Suppose q is rational and the initialfunction {f u} has the 
properties of Theorem 4.2. Then, for a strictly monotone scheme, the sequence 

=j G(UJn+k, ... * Ujn-k) 

converges as n - oo to the discrete shock vj satisfying X (vj - u,) = 0. 

Before proving these theorems we present the following remarks. 
Remark (4.1). The existence part of Theorem 4.1 can be generalized to any 

weakly monotone scheme 
ujn+ 1= G( k.G n) k ,_) 

having the property that for any e > 0 sufficiently small there exists a 

G'(Uj+k. Uj-) such that the resulting scheme is strictly monotone and 

GE(Uj+k . . . , u1) -* G(uj+k, .. . uj_) as e X 0. For example, the well-known 

Lax-Friedrichs scheme 

Wn+1 1(W n ~i Wn,VV~ 
w.l =-2 (w" + wof1)W- n)) = G(WJn+l wjn, j_ 1) 2 j_1 2j 

is only weakly monotone because Go = 0, yet, if we require the strict CFL 
condition Xlf'(w)l < 1, we may take Ge - G = -XcA+._wj for e sufficiently small, 
to prove existence of discrete shocks for rational q. (Notice that we added negative 
dissipation in this rather peculiar case in order to construct the strictly monotone 
GE.) It was pointed out by Ralston that, regarded as an algorithm of the form 

Un -2 n n n 
jy G(WJ+2 WJ W-) 

the Lax-Friedrichs scheme is strictly monotone. It is easy to use this along with 
Jennings' existence and uniqueness results to show that uniqueness, monotonicity, 
and the ordering principle are in general false for the Lax-Friedrichs scheme for q 
rational. 

Remark (4.2). If a discontinuity obeys Oleinik's condition E, 

f(u) f(UR) < f(u L) f(uR) for u E (min(u R, u L), max(u R, u L)), 
u uR u L ~uR 

it is usually called a shock. If the left side identically equals the right, it is usually 
called a linear discontinuity. Finally if equality holds somewhere in the interval, it 
is usually called a contact discontinuity. It is widely stated, e.g. [5], that good 
numerical resolution of contact discontinuities is difficult to obtain, that there is 
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more spreading than for shocks. This is true in general. However, our first order 
scheme (4.1) may have numerical steady solutions approximating linear and 
contact discontinuities with infinite resolution. If we take, for example, a function 
which looks like 

fj 

l I 
a b 

with f constant for a < u < b, f'(u) > 0 if u > b, f'(u) < 0 if u < a, then a discrete 
steady solution is 

u;_b forj< jo, uj_ a forj>jo. 

We next address ourselves to an analysis of the truncation error equation. For a 
difference scheme approximating (3.1) of the usual form (4.2) with C2 and 
piecewise C3 coefficients, a truncation error analysis shows that all smooth solu- 
tions of (4.1) satisfy 

(a) u(xj, t + At) - G(u(xj+k, t), * * *, u(xj1, t)) 

(4.5) (At)2 [Ili(u, X)ux]x + O((At)3), where 
*k 

(b) '3(u, X) = 2 G (u, U, ..., 2 
72A VW_ 2X / 

It has been pointed out [5] that solutions of monotone schemes such as (4.1) 
often behave very much like solutions of the modified parabolic equation 

(4.6) ut + (fl(u)) = At[ (u, X)ux]XI 

where @ (u, X) is defined in (4.5)(b). In fact, it is conjectured that discrete shocks 
are frequently closer to solutions of (4.6) than to solutions of (3.1). It was also 
conjectured [5] that the width of transition of these discrete shocks can be 
approximated by 

(4.7) W(U_, u+) X |f 
U+ 

_(w,-sw L a' 
J- f(w) - f(u L) -S(W _ UL)' 

where w(u_, u+) measures the number of cells occupied by values between u_ and 
u ... We have 

Remark (4.3). Both of the above conjectures are sometimes false for the scheme 
(4.1). 

We prove this as follows. First in order that the functions in (4.1) be C2 and 
piecewise C3, we take f E e with f"(iu) = 0. (We could make the coefficients in 
(4.1) Ck for arbitrary k by requiring that a sufficiently high number of derivatives 
of f vanish at u = -u.) For convenience, we again take u- = fQu) = 0. For our 
scheme 

(4.8) ffi(u, A) = Jf'(u)J [ 1- Xf'(u)j ] > 0, 
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and (4.6) becomes 
Ax 

(4.9) ut + (M(U))% = 2 (jf'(u)j(1 - lf'(u)l)ux)x. 

We look for a viscous profile, a solution of (4.9) of the form u((x - st)/Ax) = 

u(r) satisfying u(oo) = uR, u(-oo) = uL and s = (f(uR) - f(UL))/(uR - UL) 
satisfies the strict entropy condition E. Such a solution solves the ordinary 
differential equation 

(4.10) -s(u - uL) + f(u) - f(uL) = If'(u)j(l -_ Xlf(u)|)u'. 

Take a shock for which s > 0 and uR < 0 < UL. We impose the condition u(0) = 0 
to fix it, and solve (4.10) obtaining an implicit expression for the solution 

I (f'(W) + X(f'(W))2) 
r 2 JR-Rdwr >0, 

(4.11) 2 

r = !f0 dw f'(w) - X(f'(w)) , r <0. 
2 f(W) _f(uL) - s(w - uL) 

In Theorem 4.3 we have shown for s > 0 that vj -uR for > 1 - sA for the 
discrete shock satisfying these conditions at ? oo. We interpolate if necessary and 
let 

(4.12) uj = v(jAx, nAt) = v(Ax(j- An)) = = yr 

for r > 1 - A, which is very different from the function u(r) defined implicitly in 
(4.11). Thus, for (x - st)/Ax > 1 - sA, the exact solution to the difference equa- 
tion coincides with the solution to the hyperbolic differential equation and is far 
from any solution to the parabolic truncation error equation. Suppose, in Harten's 
expression (4.7), we take 0 > u_> u + > uR. We have shown 0 < w(u_, u+) < 1- 

sX < 1, while the expression he has is 

1 u.+ If'(w)II1 - XIf'(w)I] dw 
2 U (W) - sw (f(u R) - su ) 

Clearly, as u + \ u R, this expression approaches + oo while the true number is 
always less than one. 

We also note that, as s \, 0, these discrete shocks can easily be shown to 
converge to the discrete shock for s = 0 which gives infinite resolution on both 
sides. Thus, for s close to zero, these discrete shocks give good resolution even 
behind the shock. See the next section for numerical verification of this. 

The remainder of this section will be devoted to proving Theorems 4.1-4.4. 
Proof (Theorem 4.1). We modify Eq. (4.1) to make the right side strictly 

monotone. 

(4.13) = G'(uj+1, uj uj; ) = G(uj+ , uj, uj._ ) + EXA A+U 

for E > 0 sufficiently small. An explicit calculation gives us 

G e =-Xf'(uj+1) + EX > EA > 0, 

(4.14) j)= 1 + f[fZ(u1)-f+(uj) - 2e] 

= -x IS f(uj) + 2E ] > 0 - 2AE > O, 

G-el-Af'+(uj-,) + EX > EA > O, 
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if 

? < e < 2X for p,u = sup Xif'(u)j K 1. 

We first construct traveling waves for 71 = p/q, p, q mutually prime. Iterating 
(4.5) q times gives us 

(4.15) (a) uje-,p = G-q( e 

(b) uje =G , j.+p +ql...U+-) 

Ge q is monotone increasing in its arguments. 
By Theorem (1) of [8], for any uo E (UR, UL), there exists a unique {uje}' which 

takes on the value uo at j = 0 and satisfies (4.4), (4.15)(b) and is monotone 
decreasing. Now we let c , 0 for j = 1. uo > ul > u R, hence a subsequence 
u- l uo. Repeating this procedure gives us a sequence uje such that u u; for J J~~~U 
eachj. It is clear that uj is monotone nonincreasing inj and satisfies (4.14)(b) for 
c = 0. It remains only to show that uO = uL, u = uR. Since u; is monotone, it 
follows that uoo exists and uL > u > u> > uR. For any e(^) andjo we have 

00 00 

(4.16) E (P) - u+) =-X 2 (h;epq - h ;), 
J Jop J 

++ 
JoP) 11=o 1=10 

using the conservation form of G and hence G . Using consistency we have 

(4.17) e( + +ue.p - -pUR = X(heP- qf(u R)). 

Now let e(^) , 0. We have, for any 8 > 0, by takingjo sufficiently large 

(4.18) I(KU - u R) - s(f(u) - f(UR))I < 8 

Hence, 

f(Uoo) (u R) foru E[uR, uO], 

and henceu = uR by condition E. The proof that u_ = u L follows similarly. 
Next we prove the ordering principle. The key idea is an observation of Jennings 

[8],-if u and v are two discrete shock solutions with the same limits at + oo, then 
for allj 

q 
(4.19) -uj-vjI = E GvIu1+v+ -i 

v= -q 

where each partial derivative G'q is evaluated at a point on the straight line 
connecting the pair of (2q + 1) vectors (Uj+p+q . . ., Uj+p-q) and 
(Vj+p+q, ... I Vj+p_q) such that 

q 
(4.20) u, - = G, (u1+V+P- 

v= -q 

First we suppose p > 0. Condition E implies f'(u) > 0 for uL u > uL - 8 for 
some 8 > 0. Our scheme is such that Go > 0. Thus (4.19), (4.20) imply that if 
u0 > v0, then u_-<, > V - k for all positive integers k. Choose k1 so large that 

Uj, vj > UL- 8 ifj < -kIp. Suppose there exists j] <-kIp with ujh < vj,. Our prior 
analysis shows there is 12 such that/L - D <12 < i. with U12 > vj2. Consider (4.19), 
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(4.20) for j = j - p. Our scheme is such that Gq > 0 here for v = 

-q.. , 0, hence u,- itand uj2 - vj2 cannot be of opposite signs. This contradic- 
tion proves uj > vj for all j <-klp. Now if Uj3 < Vj3 for some j3, it follows that 

Uj3 - , < Vj3_kp for all positive integers k, contradicting the above result. Hence 
UO > Vo0 Uj > Uj. 

An analogous argument works forp < 0. 
If p = 0, we need the additional hypothesis of convexity, f E( C. The ordering 

principle and, in fact, a uniqueness result both follow from part (c) of Theorem 4.3 
proven below. 

In order to construct discrete shocks for irrational ij > 0, we choose a sequence 
of rationals s,X = -j ij. Fix uiR = uR and let ufL vary so that the sharp entropy 
condition remains valid. This can be done by taking U,L > UL and redefining f if 
necessary for U,L > U > U L. The functions uj' for certain j rational can be extended 
to piecewise constant monotone nondecreasing functions u(x) continuous on the 
left. We can pass to a subsequence if necessary so u'(x) -+ w(x) on a dense subset 
of the line. The limit is monotone, hence it can be extended to a function defined 
on the whole real line and continuous on the left. Also w0 = u0. The fact that 
w = uR, Iw = uL can be proven using condition E as in the proof of the first 
part of this theorem. 

It is clear that Eq. (4.3) is valid for allj in R 1. Hence existence is proven. 
Suppose w(x) and z(x) are two such solutions continuous from the left. Then it is 

easy to see that Jennings' observation (4.19), (4.20) is valid even in the irrational 
case (for q = 1 here). If w(0) > z(0), then there exists some 8 > 0 for which 
w(x) > z(x) for each interval -8 - ksX < x <-ksX, for all positive integers. Let x0 
be such that f'(w(x)) =f'(z(x)) if x < x0. It also follows that if xl < x0, with 
w(x1) > z(x), then w(x1 - v) > z(x1 - v) and w(x1 - sA) > z(x - vsA), for all 
positive integers P. We use the fact that G,q > 0 in (4.19), (4.20) if j < x1 - vsX and 
q < IL < 0. Hence, w(x) > z(x) for any x = xl = -ksX - k2 for k,, k2 positive 
integers and all x1 in an interval -8 - k3sX < x1 < k3sX for k3 a fixed sufficiently 
large positive integer. It is easy to show that this means there exists some positive 
integer k4 for which w(x) > z(x) for all x < -k4. By a now familiar argument, it 
follows that w(x) > z(x) for all x and the ordering principle is valid. 

If w(x) and z(x) are two discrete shocks continuous from the left, then the 
integral 

h(t) = f(z(x + t) - w(x)) dx 

is continuous. By the ordering principle, there exists some to for which h(to) = 0, 
and, furthermore, z(x + to) _ w(x). Since u0 was arbitrary in (uR, uL), it follows 
that w(x) takes on every value in this interval and is hence continuous. 

Proof (Theorem (4.4) (Ralston)). The proof begins by first assuming the initial 
vector { 9) lies between two discrete shocks {v.} and {Vij}. For monotone 
difference operators T, 

un+1 = {Tun}j17 = n+ 0) -q(n+ 1) 

it follows that 
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We can find a vector { wj} and a subsequence Tklu such that 

Tk"u - wTlu = - j-wj- O as k -oo. 
j 

(For this we need Jennings' result that any discrete shock {v ;j} approaches uL 

and u R exponentially in j as j + oo. This result is easily extended to our weakly 
monotone scheme.) 

Since T is an L1 contraction, we have for any discrete shock 

(a) IITkl+"u- TZtil1 < II Tklu - 111 llw - 311 

IITAw - t311, 
(4.21) and 

(b) IITk,+1 k,lTk,+Itu - Tk,+1-k,-1i311 < S Tkl+u - -|11 IITw - v|11 

llw - IbIll. 

So for any discrete shock v3 and any positive integer IL 
(4.22) 11 T vw - il I = 11w - til 1. 

For the particular discrete shock { vj} having the property that E: (vj - u,) = 0, 
it follows that E (vj - T'u>) = 2 (vj - u) = 0 for any n, hence E: (vj - wj) = 0. 
Thus, if wj mvj, it follows that (wj - vj) is not always of the same sign. 

Now 

I(TPw)j - (Tv)jl = IG"(Wj+k+n, I Wj-k+,q) - GIt(Vj+k+,q, ... 9 V* -k+,1)I 

k k 

= E G.(wV+j+ 1 - v,+j+11) < E G- 

(4.23) = -k = -k 

= IWi+k+,q - Vj+k+n| - XVh,+. * |w+, - w 

+XVhA"+,ql * I wj+n1 l-V j+n-ll, 

whereW = { Wj+k... 9 *W-k+1l} 

Summing gives us 

(4.24) IITIw - ull, < 11w - ull , 

but by (4.22) this is an equality. Hence, equality holds in (4.23). If wj0 -uj and 
w - uj are of opposite signs, we may choosej appropriately and ,u so large that 

Wo- ujo and wj, - uj appear on the right in (4.23). By strict monotonicity (the only 
place we use it), strict inequality must hold in (4.23) which is a contradiction. Thus, 
we have proven the theorem for this class of initial data. 

Given a vector { uf} satisfying the hypotheses of this theorem, we shall show 
below that, for any c > 0, there exists ue bounded above and below by discrete 
shocks with I Iue - uo < c/2, and E (ujep-u,) = 0. 

Then, for any such ue, we have 

hlTnue - vili < -/2 if n > N(e), 

and, since T is an L1 contraction, it follows that 
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It remains only to construct uE. We first choose M such that 

(4.25) 2,IU v- V < E, V<U+E, V-AS > uL-E 
Iil>M 

Next, by translating vj, we choose discrete shocks v-e, ve with 

(4.26) ~~~~ _ ( Fe) < (Ve_ UR) < E (4.26) u j (v; R)c 
IA IM Ij <M 

We then define ue as 

(4.27) uje = vj, ij > M, ujL = max(V, min(uy, v3e)), .jl <M. 

We claim that I2IjlI#M (vj - uJ)l < 3E. This follows from (4.25), (4.27) and the 
fact that E (vj - uj) = 0. Thus, if E < (UL - UR)/6, we can find u'M, UM in the 
intervals [UL - 3E, V-MI and [VM, uR + 3E], respectively, so that E (vj -uj) = 0. 

Next, we note that 

I|u - ueIll < c + 2c + 6c = 9e. 
Finally, we claim that for any j, i3-7 > uj- > v 
For ljl < M, this is immediate. For ijj > M, it is a consequence of the fact that 

we can take i5j > vj >_?e for any] which follows from the ordering principle for 
discrete shocks. 

Proof (Theorem (4.2)). Clearly we need only prove this result for {u,?} between 
two discrete shocks {,.} and {Vj}. Define wj = lim(Tknuj) as before, and again let Uj 
be the traveling wave solution satisfying E (Vj - u,) = 0. Equation (4.22) is still 
valid for this weakly monotone scheme, so either wj _ vj or w- vj takes on both 
positive and negative values. Suppose wj, > Vj,1 w12 < vJ2. 

We first consider 1 > q = p/q > 0 and let 

Uj+q 
- G (U"q .U.j 

. 
q Ujn q) = (TU)P. 

Since equality holds in (4.23) for i1 = p, and since Goq > 0, it follows that 

(4.28) (TNw)j,-Np > Vj_NP, (TNw)j2+Np < V12+NP 

for any nonnegative integer N. By condition E, we know there exists an integer jo 
with f'(vj) = f'(v.) = 0 if j < jo, and by monotonicity the same is true for (T"u)1, 
and hence Wj. Let No be chosen large enough so that]1 - Nop <jo. We claim that 

(TNw), > Vj if N > N0j < jo. This is a contradiction, hence wj _ vj. 
We prove the claim as follows. Suppose 3N1 > No and j3 < jo with (Tjw)3 < 

Vj3. We also have (T Iw) P.NP >Vj NP 
Now we let 7 

= max(j3, j] - Np) - p and choose R so large that Rq -p > 

Ij3 - j] + NpI. We then form 
Rq 

(4.29) TR(TN'W)1 - TRV, = GRq(T N'WY+ +j-_v -) 
P= -Rq 

where each partial derivative G/!q is strictly positive for -Rq < v < 0, hence 
Rq 

(4.30) ITR(TNIw) - TRvjl < I IT Tvy+j, 
'= -Rq 

which is a contradiction. 
The proof for -1 < q < 0 follows analogously. 
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For X = 0 and f E C, we use the results of part (c) of Theorem (4.3). Define wj 
in the usual fashion. We claim first that if wj > iu for j < jo, then wj _ uL for 
j = jo. Suppose instead that u- < wj, < uL for j < jo- 1. Then let {v')) be a 
discrete shock for which v(l) uL forj < j - 1, u- < wj < v(l) < uL, andv.i < 
u < wjl + 1. It is easy to obtain the contradiction 

II Tw - v(1)I1 < 1iw - v()III 
by lettingj = j] + 1, ,u = 1, and q = 0 in (4.23). 

We now call jo the largest integer for which wj > u-. Thus, wjo+I < ui < wj. and 
W forj <jo. Let {vj) be the unique discrete shock agreeing with {wj; for 

j < jo such that vjo+I < ii. We claim vj.+ = wj. If for example iu > vj.+I > 
w + 1, we can find another discrete shock {v(2)} for which ii > v.I > w. + and 

u- < (2) < w. again leading to the same contradiction as above. 
We need only show wju R for j > jo + 2. Let j2 be the smallest integer 

> jo + 2 for which wj, > uR. Let {v,(3)) be another discrete shock for which 
V(3) for] j ] )-2, w(23 <t(3!1, t) < min(wj2, ui. By letting V W 

1 X 

we easily obtain 

(Tw)2 -1- v(3) = 321 -W (T42-1 -Vj2-= Wj2-f-Vj2(3I A 
2 

x(S)f'(S) dS 

(4.31) _Xfj2 (1 - x(s))f'(s) ds 
W2-1 

-ALxfv ( - x(s))f'(s) ds > O, 
w2 

while j2_1 < V which again yields a contradiction. Thus, vj-wj and we are 
finished. 

Proof (Theorem (4.3)). For s > 0, we have 

U R < uj = G(uj+ I +3A Uj +s Uj - I +s;k) = Gq(Uj+q+qs, .., U_j-q+qsx) 

( q *,j+qsx) < Gj(Uj+q2q . .., 'U+qsx) = Uj+qsX 

if uj is such that f'(u,) < 0 for v > + sX - 1. We used monotonicity in the second 
inequality above. 

Let q -s co. It follows that uj = uR. 
The result for s < 0 follows in the same fashion. 
For s = 0, we wish to solve 

(4.33) A_-f+(uz) + A+ f(u1) = 0. 

Sum this from -oo toj, arriving at 

(4.34) f+(uz) + fb(u +1) = f(uL) + f+ (uL) = f( L), 

where for convenience we took ii = 0 = f(O). 
Thus, if uj < 0 forj < jo with ujo+I < 0, we must have uj uL fori < jo-1, 

while f+(uj9 + f(ujo + ) = f(u L). Moreover, f (ujo+2) = f(u L) = f(u R), sjou1o2 = 

uR, and hence uj _ uR forj > jo + 2. 

V. Numerical Examples. In this section we shall present results from numerical 
computations with the algorithms discussed in the previous sections. We shall focus 
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on approximations of shock solutions to the model equation 

(5.1) Ut + (4u2) = 0. 

The schemes (1.3) and (1.6) have also been applied to a number of other 
problems including the small disturbance equation of transonic flow (1.2) in two 
space dimensions. Results from computations with the first order scheme (1.3) as 
one step in a dimensional splitting algorithm were given in [4]. In a forthcoming 
paper we shall present transonic flow calculations with the second order scheme 
(1.6) and also analyze nonlinear stability of the time-discretized higher order 
scheme (5.5). 

We have computed approximations to solutions of problems with other convex 
functions f than that given in (5.1). The qualitative behavior in each of these 
approximations was essentially the same as those with the quadratic flux function. 

For the first order scheme (1.3), we use an Euler approximation in time [4]. The 
time derivatives in the second order algorithms are approximated by Lax-Wendroff 
type differencing. With this discretization, the schemes will be of second order also 
in the time direction. The appropriate linear stability analysis is given in Section 2, 
Theorem 2.2. 

We shall compare solutions of the one-sided schemes with solutions of the 
standard centered Lax-Friedrichs and Lax-Wendroff schemes. Below are the ex- 
plicit formulas for the algorithms approximating a nonlinear conservation law (1.1), 
(3.1). 

(5.2) = 4(U7/+ + Uf1)-A0J(uj') (Lax-Friedrichs), 

UL+f = Un- XA4f(u1) 
(5.3) A2 

U ) ( A+ (fj( 2 (uJ' + u1t 1))Af(u ")) (Lax-Wendroff), 

(5.4) uj+1 = ujn X(A + f j(u) + A f+(zj)) (1st order, one-sided, (1.3)), 

U+1 / \-(A+ L(un) - 'A(ft(zn)A ut) 

+A_f+(Un") 
+ 2A ( n (wfl)A Un)) 

(5.5) A 
+ - (A+ (f: (z n)A L(u,n)) + -(fr+ (wfn)A f+ (ujn))) 

(2nd order, one-sided, approximation of (1.6)), 

Un+1 =U.n - A((A+ -_A2 )f (un) + + 1 2)f (Un)) 

(5 .6) + - (A+ (f:'( u,)A+ f(zu,)) + i_(f'+ (u,n)A-J+ (zu,))) 

(2nd order, one-sided, approximation of (1.5)), 

Un+1 = - X(A+ fL(uG) - 4A+(f'(fn)A+ujn) 

+A_f+(Ujn) 
+IA n)Un) 

(5.7) 
2 j j 

+ - (A+ (:(<}n)A+ L(uj')) + (f+ (wn)AJf (un))) 

(2nd order, upwind biased, approximation of (3.8)). 
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The notation which is used in (5.2)-(5.7) is defined earlier in this paper. Let us 
here recall a few of the more important definitions. 

A = At/Ax; uj" u(xj, t), xj = jAx, t' = nAt. 

AO = '(A+ + A-), A and A_ are the standard backward and forward difference 
operations, respectively. For convexf withf'(u) = 0, we have 

f+(u) = f(max(u, i)), _(u) = f(min(u, iu)). 
See (1.3) for the definition of f+ and f for nonconvexf. See (3.5) for the definition 
of zj, wj and (3.8) for the definition of j', x>. 

In Figure 5.1 we present results with all the schemes (5.2)-(5.7) approximating a 
nonsteady shock with f = U2, u(-oo) = UL = 2, and u(oo) = UR = -1. We have 
chosen A small (= 0.1) in order to mimic the time-continuous problem which is 
analyzed in the earlier sections. The discrete solutions after 90 time iterations are 
plotted. 

a b ___ * _ 

0 c d 

The result from this testOsxtypcalorshckclculaions 

e sharp_and_mo_ _oton profiles_ _N_t_e_ _in p 

FIGURE 5 .1 

The computed solution u as a X = 0.1, discrete function of x. Methods (5.2)- 
(5.7). UL = 2, uR = 0.5, f= ?/u2. The solid line is the anallytic solution. 

The result from this test is typical for shock calculations where f' switches sign 
from one side to the other over the shock. The Lax-Friedrichs scheme produces a 
monotone profile. Since A is small, the dissipation is large. Calculations with larger 
A give sharper profiles. The overshoots (Uj > 2, u; <-1) in the Lax-Wendroff 
approximation are typical for second order centered methods. 

Both the first and the second order one-sided schemes (5.4), (5.5) have solutions 
with sharp and monotone profiles. Note in particular 

(1) The shock profile is sharp on both sides. Teheorem 4.3 guarantees Uj-uR for 
increasing]j away from the shock. The example shows that also Uj - UL rapidly as 
the index]j decreases. 
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(2) The solution to the second order scheme is monotone as a function of j. For 
steady solutions, this is proved in Theorem 3.1. 

The simplest second order one-sided method (5.6) produces a solution with 
overshoots. The last frame in Figure 5.1 displays the solution of (5.7). This solution 
is similar to that of (5.5). 

We shall complement Figure 5.1 with displays of a few other cases for some of 
the schemes with different values of X, UL and UR. Figure 5.2 contains the steady 
problem UL = 1, UR = -1 for the methods (5.3), (5.4), (5.5) and (5.6) with varying X. 
The computational stability limit for the Lax-Wendroff scheme and the first order 
one-sided scheme was X < 1. In these experiments the second order one-sided 
scheme (5.5) could be used for all X < 2, and the scheme (5.6) was only stable for 
X < 0.4. 

a k a _____ ~~~~~~b _ ___V 

0 * 

c 
UR 

_= _- ___f 
= ____2 __he _soli d line_is_the_analytic_solution. 

a x 
- 

e~~ ~ ~ __ _ ___ ___ _ ____ 

FIGURE 5.2 

The computed solution u as a discrete function of x. a, b: Method (5.3) X = 

0.1, 0.9. C, d,e:Method (5.5)X= 0.1,0.9,1.5. f: Method(5.6)X= 0.1. UL = 

1, UR = -1, f = 0 =0u2. The solid line is the analytic solution. 

The one-sided schemes were designed to approximate solutions to nonlinear 
conservation laws where f' changes sign across a shock. If this is not the case, some 
of the desirable properties of the schemes will fail. 

* 0 
ati solut . b . 0 x 

FIGURE 5.3 

The computed solution u as a discrete function of x. a: Method (5.4). b: 
Method (5.5) X= 0.1. UL = 2, UR = 0.5, f= ?/u2. The solid line is the ana- 
lytic solution. 



APPROXIMATIONS FOR NONLINEAR CONSERVATION LAWS 351 

In Figure 5.3 uL = 2 and UR = 0.5 withf' > 0 for all values of x. 
All the traveling wave solutions that we computed were not sensitive to the 

choice of initial data. 
The techniques and results discussed in this section have direct application for 

some transonic flow calculations; compare [4]. They may also be considered as 
models for more complex applications. 
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